450 research outputs found

    Cortactin overexpression results in sustained epidermal growth factor receptor signaling by preventing ligand-induced receptor degradation in human carcinoma cells

    Get PDF
    The chromosome 11q13 region is frequently amplified in human carcinomas and results in an increased expression of various genes including cortactin, and is also associated with an increased invasive potential. Cortactin acts as an important regulator of the actin cytoskeleton. It is therefore very tempting to speculate that cortactin is the crucial gene within the 11q13 amplicon that mediates the invasive potential of these carcinomas. Cortactin also participates in receptor-mediated endocytosis, and recent findings have shown that, during receptor internalization, cortactin overexpression inhibits the ubiquitylation-mediated degradation of the epidermal growth factor receptor, resulting in a sustained ligand-induced epidermal growth factor receptor activity

    RAB25 expression is epigenetically downregulated in oral and oropharyngeal squamous cell carcinoma with lymph node metastasis

    Get PDF
    Oral and oropharyngeal squamous cell carcinoma (OOSCC) have a low survival rate, mainly due to metastasis to the regional lymph nodes. For optimal treatment of these metastases, a neck dissection is required; however, inaccurate detection methods results in under- and over-treatment. New DNA prognostic methylation biomarkers might improve lymph node metastases detection. To identify epigenetically regulated genes associated with lymph node metastases, genome-wide methylation analysis was performed on 6 OOSCC with (pN+) and 6 OOSCC without (pN0) lymph node metastases and combined with a gene expression signature predictive for pN+ status in OOSCC. Selected genes were validated using an independent OOSCC cohort by immunohistochemistry and pyrosequencing, and on data retrieved from The Cancer Genome Atlas. A two-step statistical selection of differentially methylated sequences revealed 14 genes with increased methylation status and mRNA downregulation in pN+ OOSCC. RAB25, a known tumor suppressor gene, was the highest-ranking gene in the discovery set. In the validation sets, both RAB25 mRNA (P = 0.015) and protein levels (P = 0.012) were lower in pN+ OOSCC. RAB25 mRNA levels were negatively correlated with RAB25 methylation levels (P < 0.001) but RAB25 protein expression was not. Our data revealed that promoter methylation is a mechanism resulting in downregulation of RAB25 expression in pN+ OOSCC and decreased expression is associated with lymph node metastasis. Detection of RAB25 methylation might contribute to lymph node metastasis diagnosis and serve as a potential new therapeutic target in OOSCC

    Biomarker testing in oncology - Requirements for organizing external quality assessment programs to improve the performance of laboratory testing:revision of an expert opinion paper on behalf of IQNPath ABSL

    Get PDF
    In personalized medicine, predictive biomarker testing is the basis for an appropriate choice of therapy for patients with cancer. An important tool for laboratories to ensure accurate results is participation in external quality assurance (EQA) programs. Several providers offer predictive EQA programs for different cancer types, test methods, and sample types. In 2013, a guideline was published on the requirements for organizing high-quality EQA programs in molecular pathology. Now, after six years, steps were taken to further harmonize these EQA programs as an initiative by IQNPath ABSL, an umbrella organization founded by various EQA providers. This revision is based on current knowledge, adds recommendations for programs developed for predictive biomarkers by in situ methodologies (immunohistochemistry and in situ hybridization), and emphasized transparency and an evidence-based approach. In addition, this updated version also has the aim to give an overview of current practices from various EQA providers

    Comparative genome analysis of cortactin and HSI:the significance of the F-actin binding repeat domain

    Get PDF
    Background: In human carcinomas, overexpression of cortactin correlates with poor prognosis. Cortactin is an F-actin-binding protein involved in cytoskeletal rearrangements and cell migration by promoting actin-related protein (Arp)2/3 mediated actin polymerization. It shares a high amino acid sequence and structural similarity to hematopoietic lineage cell-specific protein I (HSI) although their functions differ considerable. In this manuscript we describe the genomic organization of these two genes in a variety of species by a combination of cloning and database searches. Based on our analysis, we predict the genesis of the actin-binding repeat domain during evolution.Results: Cortactin homologues exist in sponges, worms, shrimps, insects, urochordates, fishes, amphibians, birds and mammalians, whereas HSI exists in vertebrates only, suggesting that both genes have been derived from an ancestor cortactin gene by duplication. In agreement with this, comparative genome analysis revealed very similar exon-intron structures and sequence homologies, especially over the regions that encode the characteristic highly conserved F-actin-binding repeat domain. Cortactin splice variants affecting this F-actin-binding domain were identified not only in mammalians, but also in amphibians, fishes and birds. In mammalians, cortactin is ubiquitously expressed except in hematopoietic cells, whereas HSI is mainly expressed in hematopoietic cells. In accordance with their distinct tissue specificity, the putative promoter region of cortactin is different from HSI.Conclusions: Comparative analysis of the genomic organization and amino acid sequences of cortactin and HSI provides inside into their origin and evolution. Our analysis shows that both genes originated from a gene duplication event and subsequently HSI lost two repeats, whereas cortactin gained one repeat. Our analysis genetically underscores the significance of the F-actin binding domain in cytoskeletal remodeling, which is of importance for the major role of HSI in apoptosis and for cortactin in cell migration.</p

    Strategies to promote translational research within the European Organisation for Research and Treatment of Cancer (EORTC) Head and Neck Cancer Group: a report from the Translational Research Subcommittee

    Get PDF
    Head and neck squamous cell cancer (HNSCC) is the sixth leading cause of cancer-related deaths worldwide. These tumors are commonly diagnosed at advanced stages and mortality rates remain high. Even cured patients suffer the consequences of aggressive treatment that includes surgery, chemotherapy, and radiotherapy. In the past, in clinical trials, HNSCC was considered as a single disease entity. Advances in molecular biology with the development of genomic and proteomic approaches have demonstrated distinct prognostic HNSCC patient subsets beyond those defined by traditional clinical-pathological factors such as tumor subsite and stage [Cho W (ed). An Omics Perspective on Cancer Research. New York/Berlin: Springer 2010]. Validation of these biomarkers in large prospective clinical trials is required before their clinical implementation. To promote this research, the European Organisation for Research and Treatment of Cancer (EORTC) Head and Neck Cancer Program will develop the following strategies—(i) biobanking: prospective tissue collection from uniformly treated patients in the setting of clinical trials; (ii) a group of physicians, physician—scientists, and EORTC Headquarters staff devoted to patient-oriented head and neck cancer research; (iii) a collaboration between the basic scientists of the Translational Research Division interested in head and neck cancer research and the physicians of the Head and Neck Cancer Group; and (iv) funding through the EORTC Grant Program and the Network Core Institutions Consortium. In the present report, we summarize our strategic plans to promote head and neck cancer research within the EORTC framewor

    特集 がん検診

    Get PDF
    Aims—To investigate whether the analysis of immunoglobulin (Ig)/T cell receptor (TCR) rearrangements is useful in the diagnosis of lymphoproliferative disorders. Methods—In a series of 107 consecutive cases with initial suspicion of non-Hodgkin's lymphoma (NHL), Southern blot (SB) analysis of Ig/TCR rearrangements was performed. Results—In 98 of 100 histopathologically conclusive cases, Ig/TCR gene results were concordant. In one presumed diffuse large B cell lymphoma (DLCL) and one follicular lymphoma (FL) case no clonality could be detected by SB analysis, or by polymerase chain reaction (PCR) at second stage. In the DLCL, sampling error might have occurred; the FL was revised after an initial diagnosis of reactivity. In many of the histopathologically inconclusive cases Ig/TCR gene SB analysis was helpful, giving support for the histopathological suspicion. However, because of a lack of (clinical) follow up data this could not be confirmed in a few cases. Conclusions—Experienced haematopathologists or a pathologist panel can diagnose malignant versus reactive lesions in most cases without the need for Ig/TCR gene analysis and can select the 5–10% of cases that might benefit from molecular clonality studies. Key Words: B cell lymphoma • immunoglobulin and T cell receptor genes • clonality analysis • Southern blottin

    Recommendations for a practical implementation of circulating tumor DNA mutation testing in metastatic non-small-cell lung cancer

    Get PDF
    BACKGROUND: Liquid biopsy (LB) is a rapidly evolving diagnostic tool for precision oncology that has recently found its way into routine practice as an adjunct to tissue biopsy (TB). The concept of LB refers to any tumor-derived material, such as circulating tumor DNA (ctDNA) or circulating tumor cells that are detectable in blood. An LB is not limited to the blood and may include other fluids such as cerebrospinal fluid, pleural effusion, and urine, among others. PATIENTS AND METHODS: The objective of this paper, devised by international experts from various disciplines, is to review current challenges as well as state-of-the-art applications of ctDNA mutation testing in metastatic non-small-cell lung cancer (NSCLC). We consider pragmatic scenarios for the use of ctDNA from blood plasma to identify actionable targets for therapy selection in NSCLCs. RESULTS: Clinical scenarios where ctDNA mutation testing may be implemented in clinical practice include complementary tissue and LB testing to provide the full picture of patients’ actual predictive profiles to identify resistance mechanism (i.e. secondary mutations), and ctDNA mutation testing to assist when a patient has a discordant clinical history and is suspected of showing intertumor or intratumor heterogeneity. ctDNA mutation testing may provide interesting insights into possible targets that may have been missed on the TB. Complementary ctDNA LB testing also provides an option if the tumor location is hard to biopsy or if an insufficient sample was taken. These clinical use cases highlight practical scenarios where ctDNA LB may be considered as a complementary tool to TB analysis. CONCLUSIONS: Proper implementation of ctDNA LB testing in routine clinical practice is envisioned in the near future. As the clinical evidence of utility expands, the use of LB alongside tissue sample analysis may occur in the patient cases detailed here

    Immune related endonucleases and GTPases are not associated with tumor response in patients with advanced non-small cell lung cancer treated with checkpoint inhibitors

    Get PDF
    Immune related endonucleases have recently been described as potential therapeutic targets and predictors of response to treatment with immune checkpoint inhibitors (ICI). The aim is to evaluate the association between the expression of 5 biomarkers involved in the immune response (CD73, CD39, VISTA, Arl4d and Cytohesin-3) in parallel with the more common ICI-predictive markers, PD-L1 expression and Tumor Mutation Burden (TMB) with response to ICI therapy in an advanced non-small cell lung cancer (NSCLC) cohort. METHODS: Patients with advanced NSCLC treated with ICI single agent were divided into responders and non-responders according to RECIST v1.1 and duration of response (DOR) criteria. Immunohistochemistry was performed on pretreatment tumor tissue samples for PD-L1, CD73, CD39, VISTA, Arl4d, and Cytohesin-3 expression. TMB was estimated with NEOplus v2 RUO (NEO New Oncology GmbH) hybrid capture next generation sequencing assay. Resistance mutations in STK11/KEAP1 and positive predictive mutations in ARID1A/POLE were also evaluated. RESULTS: Included were 56 patients who were treated with ICI single agent. The median progression-free and overall survival for the whole cohort was 3.0 (95% CI, 2.4-3.6) and 15 (95% CI, 9.7-20.2) months, respectively. The distribution of CD73 in tumor cells and CD39, VISTA, Arl4d and Cytohesin-3 expression in immune cells were not different between responders and non-responders. Also, PD-L1 and TMB were not predictive for response. The frequency of STK11, KEAP1 and ARID1A mutations was low and only observed in the non-responder group. CONCLUSION: Separate and combined expression of 5 biomarkers involved in the immune response (CD73, CD39, VISTA, Arl4d, and Cytohesin-3) was not associated with response in our cohort of advanced NSCLC patients receiving single agent ICI. To confirm our findings the analysis of independent larger cohorts is warranted
    corecore